Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 22325, 2023 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-38102332

RESUMEN

The Araliaceae contain many valuable species in medicinal and industrial aspects. We performed intensive phylogenomics using the plastid genome (plastome) and 45S nuclear ribosomal DNA sequences. A total of 66 plastome sequences were used, 13 of which were newly assembled in this study, 12 from new sequences, and one from existing data. While Araliaceae plastomes showed conserved genome structure, phylogenetic reconstructions based on four different plastome datasets revealed phylogenetic discordance within the Asian Palmate group. The divergence time estimation revealed that splits in two Araliaceae subfamilies and the clades exhibiting phylogenetic discordances in the Asian Palmate group occurred at two climatic optima, suggesting that global warming events triggered species divergence, particularly the rapid diversification of the Asian Palmate group during the Middle Miocene. Nucleotide substitution analyses indicated that the Hydrocotyloideae plastomes have undergone accelerated AT-biased mutations (C-to-T transitions) compared with the Aralioideae plastomes, and the acceleration may occur in their mitochondrial and nuclear genomes as well. This implies that members of the genus Hydrocotyle, the only aquatic plants in the Araliaceae, have experienced a distinct evolutionary history from the other species. We also discussed the intercontinental disjunction in the genus Panax and proposed a hypothesis to complement the previously proposed hypothesis. Our results provide the evolutionary trajectory of Araliaceae and advance our current understanding of the evolution of Araliaceae species.


Asunto(s)
Araliaceae , Centella , Genoma de Plastidios , Panax , Filogenia , Mutación , Panax/genética , Evolución Molecular
2.
Sci Data ; 10(1): 792, 2023 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-37949898

RESUMEN

Agastache rugosa, also known as Korean mint, is a perennial plant from the Lamiaceae family that is traditionally used for various ailments and contains antioxidant and antibacterial phenolic compounds. Molecular breeding of A. rugosa can enhance secondary metabolite production and improve agricultural traits, but progress in this field has been delayed due to the lack of chromosome-scale genome information. Herein, we constructed a chromosome-level reference genome using Nanopore sequencing and Hi-C technology, resulting in a final genome assembly with a scaffold N50 of 52.15 Mbp and a total size of 410.67 Mbp. Nine pseudochromosomes accounted for 89.1% of the predicted genome. The BUSCO analysis indicated a high level of completeness in the assembly. Repeat annotation revealed 561,061 repeat elements, accounting for 61.65% of the genome, with Copia and Gypsy long terminal repeats being the most abundant. A total of 26,430 protein-coding genes were predicted, with an average length of 1,184 bp. The availability of this chromosome-scale genome will advance our understanding of A. rugosa's genetic makeup and its potential applications in various industries.


Asunto(s)
Genoma de Planta , Mentha , Cromosomas , Mentha/genética , Anotación de Secuencia Molecular , Filogenia , República de Corea
4.
Biosens Bioelectron ; 241: 115670, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37714061

RESUMEN

The simultaneous genotyping of multiple single nucleotide polymorphisms (SNPs) in genomic DNA derived from organisms holds significant potential for applications such as precision medicine and food product authentication. However, conventional assay technologies including qPCR-based techniques, microarrays, and hydrogel-based assays face limitations in efficient multiplexing of SNPs, particularly for large-size DNA beyond kilobase scales, due to constraints in multiplex capability, specificity, or sensitivity. In this study, a hydrogel-based multiplex SNP genotyping platform specifically designed for genomic DNA is presented. This platform integrates the ligation detection reaction (LDR) and rolling circle amplification (RCA) techniques within a hydrogel-based multiplex sensing system, enabling adaptable and sensitive SNP genotyping for genomic DNA. To enhance the specificity of the assay, MutS protein and polyethylene glycol are introduced into the protocol, reducing the non-specific ligation and RCA reactions synergistically. With significant specificity improvement of over 10-fold, three types of SNPs within an artificially constructed ∼1000 bp double-stranded DNA (dsDNA) are successfully genotyped with double-digit picomolar sensitivity. Furthermore, the practical applicability of the developed process for the origin identification of raw materials is demonstrated by genotyping three types of SNPs within genomic DNA obtained from two closely related plant species, Korean ginseng (Panax ginseng) and American ginseng (Panax quinquefolius), containing ca. 3.5 gigabase genome size. Of notable significance, this study marks the premiere achievement in PCR-free multiplex genotyping of SNPs in genomic DNA using a single fluorophore.

5.
Hortic Res ; 10(1): uhac246, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36643742

RESUMEN

Chimeric plants composed of green and albino tissues have great ornamental value. To unveil the functional genes responsible for albino phenotypes in chimeric plants, we inspected the complete plastid genomes (plastomes) in green and albino leaf tissues from 23 ornamental chimeric plants belonging to 20 species, including monocots, dicots, and gymnosperms. In nine chimeric plants, plastomes were identical between green and albino tissues. Meanwhile, another 14 chimeric plants were heteroplasmic, showing a mutation between green and albino tissues. We identified 14 different point mutations in eight functional plastid genes related to plastid-encoded RNA polymerase (rpo) or photosystems which caused albinism in the chimeric plants. Among them, 12 were deleterious mutations in the target genes, in which early termination appeared due to small deletion-mediated frameshift or single nucleotide substitution. Another was single nucleotide substitution in an intron of the ycf3 and the other was a missense mutation in coding region of the rpoC2 gene. We inspected chlorophyll structure, protein functional model of the rpoC2, and expression levels of the related genes in green and albino tissues of Reynoutria japonica. A single amino acid change, histidine-to-proline substitution, in the rpoC2 protein may destabilize the peripheral helix of plastid-encoded RNA polymerase, impairing the biosynthesis of the photosynthesis system in the albino tissue of R. japonica chimera plant.

6.
J Ginseng Res ; 47(1): 44-53, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36644396

RESUMEN

Background: The genus Panax in the Araliaceae family has been used as traditional medicinal plants worldwide and is known to biosynthesize ginsenosides and phytosterols. However, genetic variation between Panax species has influenced their biosynthetic pathways is not fully understood. Methods: Simultaneous analysis of transcriptomes and metabolomes obtained from adventitious roots of two tetraploid species (Panax ginseng and P. quinquefolius) and two diploid species (P. notoginseng and P. vietnamensis) revealed the diversity of their metabolites and related gene expression profiles. Results: The transcriptome analysis showed that 2,3-OXIDOSQUALENE CYCLASEs (OSCs) involved in phytosterol biosynthesis are upregulated in the diploid species, while the expression of OSCs contributing to ginsenoside biosynthesis is higher in the tetraploid species. In agreement with these results, the contents of dammarenediol-type ginsenosides were higher in the tetraploid species relative to the diploid species. Conclusion: These results suggest that a whole-genome duplication event has influenced the triterpene biosynthesis pathway in tetraploid Panax species during their evolution or ecological adaptation. This study provides a basis for further efforts to explore the genetic variation of the Panax genus.

7.
PLoS One ; 17(9): e0273616, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36084027

RESUMEN

The diversity of secondary metabolites of individual plants results from multiple enzymatic processes in planta and various environmental factors, such as temperature, moisture, and soil conditions. Chemical composition analysis of plants can lead to a new method to understand relationship among comparable plants along with biological classification such as genetic and anatomical method. In this study, the chemical diversity of nine different Lauraceae species was investigated, and the plant samples were chemically analyzed and classified. Multivariate analysis methods, such as PLS-DA, were used to select important metabolites distinguishing the nine Lauraceae species. The selected metabolites were identified through preparative LC-MS or MS/MS fragment pattern analysis. In addition, the chemical dendrogram for the nine Lauraceae species was interpreted through molecular network analysis and compared with the genetic dendrogram. This approach enabled us to compare the complete chemical compositions of multiple plant samples to identify relationships among plants.


Asunto(s)
Lauraceae , Quimiometría , Análisis de Datos , Lauraceae/química , Fitoquímicos/química , Espectrometría de Masas en Tándem
8.
Mob DNA ; 13(1): 18, 2022 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-35698176

RESUMEN

Long terminal repeat retrotransposons (LTR-RTs) make up a considerable portion of plant genomes. New insertions of these active LTR-RTs modify gene structures and functions and play an important role in genome evolution. Therefore, identifying active forms of LTR-RTs could uncover the effects of these elements in plants. Extrachromosomal linear DNA (eclDNA) forms during LTR-RT replication; therefore, amplification LTRs of eclDNAs followed by sequencing (ALE-seq) uncover the current transpositional potential of the LTR-RTs. The ALE-seq protocol was validated by identification of Tos17 in callus of Nipponbare cultivar. Here, we identified two active LTR-RTs belonging to the Oryco family on chromosomes 6 and 9 in rice cultivar Dongjin callus based on the ALE-seq technology. Each Oryco family member has paired LTRs with identical sequences and internal domain regions. Comparison of the two LTR-RTs revealed 97% sequence identity in their internal domains and 65% sequence identity in their LTRs. These two putatively active Oryco LTR-RT family members could be used to expand our knowledge of retrotransposition mechanisms and the effects of LTR-RTs on the rice genome.

9.
Mitochondrial DNA B Resour ; 7(5): 766-768, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35558174

RESUMEN

Peucedanum hakuunense Nakai is one of the rare species in the Korean Peninsula. This study characterized the complete plastid genome (plastome) sequence of P. hakuunense by de novo assembly with next-generation sequencing data. The complete plastome of P. hakuunense is 147,426 bp in length with a typical quadripartite structure comprising a large single-copy region of 91,915 bp, a small single-copy region of 17,425 bp, and two inverted repeat regions of 19,043 bp in length. The plastome of P. hakuunense is composed of 85 protein-coding genes, 36 tRNA genes, and 8 rRNA genes. The phylogenetic analysis revealed that two Peucedanum species formed an independent subclade, sister to the subclade of Angelica species within the tribe Selineae.

10.
PLoS One ; 17(3): e0264576, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35271607

RESUMEN

The genus Artemisia is an important source of medicines in both traditional and modern pharmaceutics, particularly in East Asia. Despite the great benefits of herbal medicine, quality assessment methods for these medicinal herbs are lacking. The young leaves from Artemisia species are generally used, and most of the species have similar morphology, which often leads to adulteration and misuse. This study assembled five complete chloroplast genomes of three Artemisia species, two accessions of A. gmelinii and A. capillaris, and one A. fukudo. Through comparative analysis, we revealed genomic variations and phylogenetic relationships between these species and developed seven InDel-based barcode markers which discriminated the tested species from each other. Additionally, we analyzed specialized metabolites from the species using LC-MS and suggested chemical markers for the identification and authentication of these herbs. We expect that this integrated and complementary authentication method would aid in reducing the misuse of Artemisia species.


Asunto(s)
Artemisia , Genoma del Cloroplasto , Plantas Medicinales , Artemisia/genética , Filogenia , Fitoterapia , Plantas Medicinales/genética
11.
BMC Plant Biol ; 22(1): 4, 2022 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-34979940

RESUMEN

BACKGROUND: Cynanchum wilfordii (Cw) and Cynanchum auriculatum (Ca) have long been used in traditional medicine and as functional food in Korea and China, respectively. They have diverse medicinal functions, and many studies have been conducted, including pharmaceutical efficiency and metabolites. Especially, Cw is regarded as the most famous medicinal herb in Korea due to its menopausal symptoms relieving effect. Despite the high demand for Cw in the market, both species are cultivated using wild resources with rare genomic information. RESULTS: We collected 160 Cw germplasm from local areas of Korea and analyzed their morphological diversity. Five Cw and one Ca of them, which were morphologically diverse, were sequenced, and nuclear ribosomal DNA (nrDNA) and complete plastid genome (plastome) sequences were assembled and annotated. We investigated the genomic characteristics of Cw as well as the genetic diversity of plastomes and nrDNA of Cw and Ca. The Cw haploid nuclear genome was approximately 178 Mbp. Karyotyping revealed the juxtaposition of 45S and 5S nrDNA on one of 11 chromosomes. Plastome sequences revealed 1226 interspecies polymorphisms and 11 Cw intraspecies polymorphisms. The 160 Cw accessions were grouped into 21 haplotypes based on seven plastome markers and into 108 haplotypes based on seven nuclear markers. Nuclear genotypes did not coincide with plastome haplotypes that reflect the frequent natural outcrossing events. CONCLUSIONS: Cw germplasm had a huge morphological diversity, and their wide range of genetic diversity was revealed through the investigation with 14 molecular markers. The morphological and genomic diversity, chromosome structure, and genome size provide fundamental genomic information for breeding of undomesticated Cw plants.


Asunto(s)
Cynanchum/genética , Variación Genética , Genoma de Planta , República de Corea
13.
Sci Rep ; 11(1): 5153, 2021 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-33664414

RESUMEN

Ilex is a monogeneric plant group (containing approximately 600 species) in the Aquifoliaceae family and one of the most commonly used medicinal herbs. However, its taxonomy and phylogenetic relationships at the species level are debatable. Herein, we obtained the complete chloroplast genomes of all 19 Ilex types that are native to Hong Kong. The genomes are conserved in structure, gene content and arrangement. The chloroplast genomes range in size from 157,119 bp in Ilex graciliflora to 158,020 bp in Ilex kwangtungensis. All these genomes contain 125 genes, of which 88 are protein-coding and 37 are tRNA genes. Four highly varied sequences (rps16-trnQ, rpl32-trnL, ndhD-psaC and ycf1) were found. The number of repeats in the Ilex genomes is mostly conserved, but the number of repeating motifs varies. The phylogenetic relationship among the 19 Ilex genomes, together with eight other available genomes in other studies, was investigated. Most of the species could be correctly assigned to the section or even series level, consistent with previous taxonomy, except Ilex rotunda var. microcarpa, Ilex asprella var. tapuensis and Ilex chapaensis. These species were reclassified; I. rotunda was placed in the section Micrococca, while the other two were grouped with the section Pseudoaquifolium. These studies provide a better understanding of Ilex phylogeny and refine its classification.


Asunto(s)
Cloroplastos/genética , Evolución Molecular , Ilex/genética , Filogenia , Genoma del Cloroplasto/genética , Genómica , Hong Kong , Repeticiones de Microsatélite/genética
14.
Sci Rep ; 11(1): 2506, 2021 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-33510273

RESUMEN

Both genomes in chloroplasts and mitochondria of plant cell are usually inherited from maternal parent, with rare exceptions. To characterize the inheritance patterns of the organelle genomes in cucumber (Cucumis sativus var. sativus), two inbred lines and their reciprocal F1 hybrids were analyzed using an next generation whole genome sequencing data. Their complete chloroplast genome sequences were de novo assembled, and a single SNP was identified between the parental lines. Two reciprocal F1 hybrids have the same chloroplast genomes with their maternal parents. Meanwhile, 292 polymorphic sites were identified between mitochondrial genomes of the two parental lines, which showed the same genotypes with their paternal parents in the two reciprocal F1 hybrids, without any recombination. The inheritance patterns of the chloroplast and mitochondria genomes were also confirmed in four additional cucumber accessions and their six reciprocal F1 hybrids using molecular markers derived from the identified polymorphic sites. Taken together, our results indicate that the cucumber chloroplast genome is maternally inherited, as is typically observed in other plant species, whereas the large cucumber mitochondrial genome is paternally inherited. The combination of DNA markers derived from the chloroplast and mitochondrial genomes will provide a convenient system for purity test of F1 hybrid seeds in cucumber breeding.


Asunto(s)
Cucumis sativus/genética , Genoma del Cloroplasto , Genoma Mitocondrial , Hibridación Genética , Patrón de Herencia , Evolución Molecular , Marcadores Genéticos , Genómica/métodos , Fitomejoramiento , Polimorfismo Genético
15.
Phytochemistry ; 181: 112576, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33166748

RESUMEN

The genetic relationship between Taraxacum species, also known as the dandelion, is complicated because of asexual and mixed sexual apomictic reproduction. The usage of Taraxacum species in traditional medicines make their specialized metabolism important, but interspecific chemical difference has rarely been reported for the genus. In this study, we assembled the chloroplast genome and 45S rDNA of six Taraxacum species that occur in Korea (T. campylodes, T. coreanum, T. erythrospermum, T. mongolicum, T. platycarpum, and T. ussuriense), and performed a comparative analysis, which revealed their phylogenetic relationships and possible natural hybridity. We also performed a liquid chromatography-mass spectrometry-based phytochemical analysis to reveal interspecific chemical diversity. The comparative metabolomics analysis revealed that Taraxacum species could be separated into three chemotypes according to their major defensive specialized metabolites, which were the sesquiterpene lactones, the phenolic inositols, and chlorogenic acid derivatives. The CP DNA- and 45S rDNA-based phylogenetic trees showed a tangled relationship, which supports the notion of ongoing hybridization of wild Taraxacum species. The untargeted LC-MS analysis revealed that each Taraxacum plant exhibits species-specific defensive specialized metabolism. Moreover, 45S rDNA-based phylogenetic tree correlated with the hierarchical cluster relied on metabolite compositions. Given the coincidence between these analyses, we represented that 45S rDNA could well reflect overall nuclear genome variation in Taraxacum species.


Asunto(s)
Taraxacum , Filogenia , República de Corea , Especificidad de la Especie , Taraxacum/genética
16.
Artículo en Inglés | MEDLINE | ID: mdl-33081340

RESUMEN

In this study, we aim to propose motives that can help increase the creative activities of Korean performing artists and discuss the policy implications for the sustainable management of Korean performing arts. First, we investigate the characteristics of Korean artists that receive subsidies as a form of government support for undertaking artistic activities. Second, we examine whether receipt of such grants influences the artists' job and life satisfaction. Through a logistics model, we reconstructed the "2015 Survey Report on Artists & Activities" and validated the research hypothesis. We first considered subsidies that could directly impact artists' income and activities and then verified whether subsidies influence artists' job and life satisfaction. As a result of the research, first, art grants should be supported in order to help artists produce creative and experimental works. Second, we showed that artists' subsidies should be expanded in order to enhance artists' quality of life and the sustainability of artistic activities. Above all, subsidy support for artists showed that art can be legitimate as a public good, which is a common asset in society.


Asunto(s)
Arte , Financiación Gubernamental , Calidad de Vida , Adulto , Gobierno , Humanos , Persona de Mediana Edad , República de Corea , Encuestas y Cuestionarios , Adulto Joven
17.
Sci Rep ; 10(1): 6112, 2020 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-32273595

RESUMEN

The transfer of ancestral plastid genomes into mitochondrial genomes to generate mitochondrial plastid DNA (MTPT) is known to occur in plants, but its impacts on mitochondrial genome complexity and the potential for causing a false-positive DNA barcoding paradox have been underestimated. Here, we assembled the organelle genomes of Cynanchum wilfordii and C. auriculatum, which are indigenous medicinal herbs in Korea and China, respectively. In both species, it is estimated that 35% of the ancestral plastid genomes were transferred to mitochondrial genomes over the past 10 million years and remain conserved in these genomes. Some plastid barcoding markers co-amplified the conserved MTPTs and caused a barcoding paradox, resulting in mis-authentication of botanical ingredients and/or taxonomic mis-positioning. We identified dynamic and lineage-specific MTPTs that have contributed to mitochondrial genome complexity and might cause a putative barcoding paradox across 81 plant species. We suggest that a DNA barcoding guidelines should be developed involving the use of multiple markers to help regulate economically motivated adulteration.


Asunto(s)
Cynanchum/genética , Código de Barras del ADN Taxonómico/normas , ADN de Cloroplastos/genética , ADN Mitocondrial/genética , Cynanchum/clasificación , Código de Barras del ADN Taxonómico/métodos , Evolución Molecular , Filogenia
18.
J Ginseng Res ; 44(1): 135-144, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32148396

RESUMEN

BACKGROUND: Panax species are important herbal medicinal plants in the Araliaceae family. Recently, we reported the complete chloroplast genomes and 45S nuclear ribosomal DNA sequences from seven Panax species, two (P . quinqu e folius and P . trifolius) from North America and five (P . ginseng, P . notoginseng, P . japonicus, P . vietnamensis, and P . stipuleanatus) from Asia. METHODS: We conducted phylogenetic analysis of these chloroplast sequences with 12 other Araliaceae species and comprehensive comparative analysis among the seven Panax whole chloroplast genomes. RESULTS: We identified 1,128 single nucleotide polymorphisms (SNP) in coding gene sequences, distributed among 72 of the 79 protein-coding genes in the chloroplast genomes of the seven Panax species. The other seven genes (including psaJ, psbN, rpl23, psbF, psbL, rps18, and rps7) were identical among the Panax species. We also discovered that 12 large chloroplast genome fragments were transferred into the mitochondrial genome based on sharing of more than 90% sequence similarity. The total size of transferred fragments was 60,331 bp, corresponding to approximately 38.6% of chloroplast genome. We developed 18 SNP markers from the chloroplast genic coding sequence regions that were not similar to regions in the mitochondrial genome. These markers included two or three species-specific markers for each species and can be used to authenticate all the seven Panax species from the others. CONCLUSION: The comparative analysis of chloroplast genomes from seven Panax species elucidated their genetic diversity and evolutionary relationships, and 18 species-specific markers were able to discriminate among these species, thereby furthering efforts to protect the ginseng industry from economically motivated adulteration.

19.
Int J Mol Sci ; 20(9)2019 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-31060231

RESUMEN

Three Apiaceae species Ledebouriella seseloides, Peucedanum japonicum, and Glehnia littoralis are used as Asian herbal medicines, with the confusingly similar common name "Bang-poong". We characterized the complete chloroplast (cp) genomes and 45S nuclear ribosomal DNA (45S nrDNA) sequences of two accessions for each species. The complete cp genomes of G. littoralis, L. seseloides, and P. japonicum were 147,467, 147,830, and 164,633 bp, respectively. Compared to the other species, the P. japonicum cp genome had a huge inverted repeat expansion and a segmental inversion. The 45S nrDNA cistron sequences of the three species were almost identical in size and structure. Despite the structural variation in the P. japonicum cp genome, phylogenetic analysis revealed that G. littoralis diverged 5-6 million years ago (Mya), while P. japonicum diverged from L. seseloides only 2-3 Mya. Abundant copy number variations including tandem repeats, insertion/deletions, and single nucleotide polymorphisms, were found at the interspecies level. Intraspecies-level polymorphism was also found for L. seseloides and G. littoralis. We developed nine PCR barcode markers to authenticate all three species. This study characterizes the genomic differences between L. seseloides, P. japonicum, and G. littoralis; provides a method of species identification; and sheds light on the evolutionary history of these three species.


Asunto(s)
Apiaceae/clasificación , Apiaceae/genética , Código de Barras del ADN Taxonómico , Reordenamiento Génico , Genoma del Cloroplasto , Plantas Medicinales/clasificación , Plantas Medicinales/genética , Cloroplastos/genética , Variaciones en el Número de Copia de ADN , Genómica/métodos , Mutación , Sistemas de Lectura Abierta , Filogenia , ARN Ribosómico/genética , Análisis de Secuencia de ADN , Secuencias Repetidas en Tándem
20.
Mitochondrial DNA B Resour ; 5(1): 85-86, 2019 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-33366434

RESUMEN

Liriope platyphylla is herbaceous perennial plant belonging to the Asparagaceae family and widely used both as ornamental plant and herbal medicine. The complete chloroplast genome of L. platyphylla was 156,754 bp in length, which was composed of four distinct parts; a large single copy (LSC) of 85,118 bp, a small single copy (SSC) of 18,680 bp, and a pair of inverted repeat regions (IRa and IRb) of 26,478 bp. A total of 130 genes including 83 protein-coding genes, 39 tRNA genes and 8 rRNA genes were identified. The phylogenetic tree showed that L. platyphylla has a close relationship with other Nolinoideae plants, especially with Maianthemum dilatatum and Nolina atopocarpa.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...